• Wednesday, August 2, 2023

     Mikroskop

    Mikroskop (dari bahasa Yunani Kuno: μικρός, mikrós, "kecil" dan σκοπεῖν, skopeîn, "melihat") adalah alat laboratorium yang digunakan untuk mengamati benda yang sangat kecil dan benda yang tidak tampak oleh indra penglihatan secara langsung. Ukuran bayangan atau gambar yang dihasilkan oleh mikroskop dapat mencapai jutaan kali ukuran benda aslinya. Perbesaran yang dihasilkan oleh mikroskop bergantung pada jenis mikroskop yang digunakan. Jenis-jenis mikroskop dapat dikelompokkan dengan berbagai kategori. Salah satu caranya adalah melalui metode yang digunakan oleh instrumen tersebut untuk berinteraksi dengan sampel dan menghasilkan gambar. Contohnya dengan mengirimkan seberkas cahaya atau elektron melalui sampel di jalur optik, dan mendeteksi emisi foton dari sampel tersebut untuk membentuk bayangan atau gambar, ataupun dengan memindai permukaan sampel dengan jarak pendek menggunakan probe. Dua jenis mikroskop yang sering digunakan ialah mikroskop optik (sering kali disebut juga sebagai mikroskop cahaya) dan mikroskop elektronIlmu yang mempelajari benda kecil dengan menggunakan mikroskop disebut mikroskopi.[1]

    Manfaat dari penggunaan mikroskop yaitu mampu mengukur benda-benda yang tidak dapat terukur dengan ketelitian tinggi oleh alat ukur konvensional, seperti bakterivirussel darah dan sel-sel tubuh makhluk hidup. Mikroskop memiliki skala ukur yang dapat berimpit dengan bayangan benda sehingga ukuran benda dapat diketahui dengan pasti.


    Mikroskop Optik

    Penjelasan rinci pertama mengenai anatomi mikroskopis jaringan organik berdasarkan penggunaan mikroskop tidak muncul hingga tahun 1644, dalam L'occhio della mosca karya Giambattista Odierna, atau The Fly's Eye.

    Secara umum, mikroskop masih merupakan hal baru sampai tahun 1660-an dan 1670-an ketika para naturalis di Italia, Belanda, dan Inggris mulai menggunakannya untuk mempelajari biologi. Ilmuwan Italia Marcello Malpighi, yang disebut bapak histologi oleh beberapa sejarawan biologi, memulai analisis mengenai struktur biologis pada paru-paru. Penerbitan Micrographia karya Robert Hooke pada tahun 1665 memiliki dampak yang cukup besar, terutama karena ilustrasinya yang mengesankan. Kontribusi signifikan datang dari Antonie van Leeuwenhoek yang berhasil mencapai perbesaran hingga 300 kali menggunakan mikroskop lensa tunggal sederhana. Van Leeuwenhoek menjepit lensa bola kaca yang sangat kecil di antara lubang pada dua piringan logam yang dipaku bersama, dan menggunakan jarum sekrup yang dapat disesuaikan untuk memasang spesimen. Kemudian, Van Leeuwenhoek mengamati dan menemukan kembali citra sel darah merah (setelah Jan Swammerdam) dan spermatozoa, dan membantu mempopulerkan penggunaan mikroskop untuk melihat ultrastruktur biologis. Pada 9 Oktober 1676, van Leeuwenhoek melaporkan penemuan mikroorganisme.

    Kinerja mikroskop cahaya tergantung pada kualitas dan penggunaan yang benar dari sistem lensa kondensor untuk memfokuskan cahaya pada spesimen, dan lensa objektif yang menangkap cahaya dari spesimen dan membentuk gambar. Pada awal masa perkembangannya, instrumen-instrumen yang digunakan sangat terbatas, hingga akhirnya prinsip ini sepenuhnya diterima dan dikembangkan pada akhir abad ke-19 hingga awal abad ke-20, ketika lampu listrik tersedia sebagai sumber cahaya. Pada tahun 1893 August Köhler mengembangkan prinsip utama iluminasi sampel, disebut juga iluminasi Köhler, yang sangat penting untuk mendapatkan batas teoretis resolusi untuk mikroskop cahaya. Metode iluminasi sampel ini menghasilkan pencahayaan yang merata dan mengatasi permasalahan kontras dan resolusi terbatas yang diterapkan oleh teknik awal iluminasi sampel. Perkembangan lebih lanjut dalam iluminasi sampel berasal dari penemuan kontras fase oleh Frits Zernike pada tahun 1953, dan iluminasi kontras interferensi diferensial oleh Georges Nomarski pada tahun 1955; keduanya memungkinkan pencitraan sampel transparan yang tidak ternoda dan cukup jernih.


    Mikroskop Elektron

    Pada awal abad ke-20, alternatif lain untuk mikroskop cahaya dikembangkan dengan signifikan. Alternatif ini menggunakan instrumen yang memanfaatkan berkas elektron (sebagai pengganti cahaya) untuk menghasilkan gambar. Fisikawan Jerman, Ernst Ruska, bekerja dengan insinyur listrik Max Knoll, mengembangkan mikroskop elektron prototipe pertama pada tahun 1931, mikroskop elektron transmisi (bahasa Inggris: Transmission Electron Microscope (TEM)). Mikroskop elektron transmisi bekerja dengan prinsip yang mirip dengan mikroskop optik tetapi menggunakan elektron sebagai pengganti cahaya dan elektromagnet sebagai pengganti lensa kaca. Penggunaan elektron, alih-alih cahaya, memungkinkan resolusi yang jauh lebih tinggi.

    Pengembangan mikroskop elektron transmisi dengan cepat diikuti pada tahun 1935 oleh pengembangan mikroskop elektron pemindaian (bahasa Inggris: Scanning Electron Microscope (SEM)) oleh Max Knoll.[5] Meskipun TEM digunakan untuk penelitian sebelum Perang Dunia II, dan menjadi populer setelahnya, SEM tidak tersedia secara komersial hingga tahun 1965.

    Mikroskop elektron transmisi menjadi populer setelah Perang Dunia Kedua. Ernst Ruska, yang pada saat itu bekerja di Siemens, mengembangkan mikroskop elektron transmisi komersial pertama dan, pada 1950-an, konferensi ilmiah besar mengenai mikroskop elektron mulai diadakan. Pada tahun 1965, mikroskop elektron pemindaian komersial pertama dikembangkan oleh Profesor Sir Charles Oatley dan mahasiswa pascasarjananya Gary Stewart, dan dipasarkan oleh Cambridge Instrument Company sebagai "Stereoscan".


    Stuktur

    • Bagian optik, yang terdiri dari lensa objektif dan lensa okuler. Lensa objektif adalah lensa yang dekat dengan objek yang diamati. Perbesaran lensa objektif dapat diatur di revolver dengan perbesaran 5×, 10×, 20×, 50×, atau 100×. Sedangkan lensa okuler adalah lensa yang digunakan untuk tempat mata pengamat untuk mengamati objek. Perbesaran lensa okuler dapat disesuaikan kebutuhan dengan perbesaran 5×, 6×, 10× dan 15×.[9]
    • Bagian non-optik, yang terdiri dari kaki dan lengan mikroskop, diafragma, meja objek/meja preparat, pemutar halus dan kasar (makrometer sekrup), penjepit kaca objek (preparat), cermin, kondensor, dan sumber cahaya. Kaki dan lengan mikroskop berfungsi untuk menunjang mikroskop. Meja objek berfungsi sebagai tempat meletakan objek yang diamati. Pemutar halus dan kasar digunakan untuk mengatur bayangan yang dihasilkan. Sedangkan cermin digunakan sebagai pemantul cahaya agar pengamatan dapat dilakukan

    Perbesaran[sunting | sunting sumber]

    Morfologi irisan bawang merah yang diambil melalui mikroskop cahaya dengan pembesaran lensa objektif 10 kali

    Tujuan penggunaan mikroskop cahaya dan elektron adalah menghasilkan bayangan dari benda yang diamati menjadi lebih besar. Umumnya, mikroskop cahaya memiliki perbesaran maksimum yaitu sebesar 1000× (kali).[10] Pembesaran ini tergantung pada berbagai faktor, diantaranya titik fokus kedua lensa (objektif f1 dan okuler f2, panjang tubulus atau jarak(t) lensa objektif terhadap lensa okuler dan yang ketiga adalah jarak pandang mata normal(sn). Rumus: . Selain itu, perbesaran biasanya dihasilkan dari perkalian antara lensa obyektif dan lensa okuler dari pengamatan suatu objek.

    Sifat Bayangan Mikroskop Optik[sunting | sunting sumber]

    Baik lensa objektif maupun lensa okuler keduanya merupakan lensa cembung. Secara garis besar lensa objektif menghasilkan suatu bayangan sementara yang sifatnya semu, terbalik, dan diperbesar terhadap posisi benda mula-mula, lalu yang menentukan sifat bayangan akhir selanjutnya adalah lensa okuler. Pada mikroskop cahaya, bayangan akhir mempunyai sifat yang sama seperti bayangan sementara, semu, terbalik, dan lebih lagi diperbesar. Pada mikroskop elektron bayangan akhir mempunyai sifat yang sama seperti gambar benda nyata, sejajar, dan diperbesar. Jika seseorang yang menggunakan mikroskop cahaya meletakkan huruf A di bawah mikroskop, maka yang ia lihat adalah huruf A yang terbalik dan diperbesar.

    Cara Penggunaan Mikroskop Optik[sunting | sunting sumber]

    Hal yang harus dilakukan pertama kali saat menggunakan mikrokop adalah meletakkannya di meja pengamatan. Setelah itu, pasang lensa okuler dengan kekuatan pembesaran lemah yakni 5× pembesaran. Kemudian, putar makrometer ke arah belakang agar posisi badan mikroskop condong ke atas.

    Hal berikutnya yang perlu dilakukan adalah menyejajarkan lensa objektif dengan arah datangnya cahaya. Caranya adalah dengan menggeser lensa objektif tersebut. Selanjutnya, atur pembesaran lensa objektif dengan pembesaran lemah yakni 10× sehingga hasil kali pembesaran lensa okuler dan objektif menghasilkan 50× pembesaran yang diperoleh dari 10 × 5 = 50 kali pembesaran.

    Langkah selanjutnya adalah mengatur cahaya pada kondensor dan diafragma dengan cara menaikkan kondensor setinggi mungkin serta membuka diafragma selebar mungkin. Kemudian atur medan pandang dengan memutar cermin. Setelah terpasang dengan baik, pasanglah preparat di meja mikroskop.

    Setelah meja preparat terpasang dengan baik, letakkan objek yang akan diamati tepat di meja preparat. Amati objek dengan mendekatkan satu mata melalui lubang lensa okuler sambil mengatur fokus cahaya dan kondensornya. Jika objek sudah terlihat jelas dengan pembesaran lemah dari lensa objektif, kita bisa mengatur pembesaran dengan skala yang lebih besar lagi.[11][12]

    Penggunaan mikroskop sebaiknya perlu diperhatikan agar menghindari hal - hal yang tidak diinginkan. Salah satu kesalahan praktikan yang sering dilakukan, yaitu memindahkan lensa obyektif tidak memutar revolver. Selain itu, tidak menggunakan minyak inersi ketika memakai perbesaran lensa obyektif paling besar. Hal tersebut dapat menyebabkan lensa obyektif akan mudah tergores, sehingga hasil pengamatan objek tidak terlihat dengan baik dan jelas. Dengan demikian, perlu dilakukan kehati - hatian dalam menggunakan alat ilmiah ini.[13]

    Penyimpanan mikroskop juga perlu diperhatikan, terutama tempat penyimpanan sebaiknya disimpan pada almari khusus yang dilengkapi dengan lampu. Tujuannya yaitu agar ruangan tersebut tidak mudah lembab, sehingga terhindar dari timbulnya jamur yang bisa membuat lensa buram atau bagian lain pada mikroskop cepat rusak.[14]

    Fungsi Bagian - Bagian Mikroskop Optik[sunting | sunting sumber]

    • Lensa obyektif digunakan untuk membentuk bayangan pertama dan menentukan struktur bagian renik.
    • Lensa okuler digunakan untuk memperbesar bayangan yang dihasilkan oleh lensa obyektif.
    • Cermin pada mikroskop berguna untuk menangkap dan mengerahkan cahaya.
    • Lengan pada mikroskop untuk mempermudah dalam memindahkan dan menaruh mikroskop.
    • Kondensor cahaya digunakan untuk mengarahkan cahaya yang dipantulkan dari cermin dan memfokuskan ke objek.
    • Diafragma berfungsi sebagai pengatur banyaknya cahaya yang mengenai objek.
    • Revolver berfungsi untuk memutar lensa objektif sehingga pembesaran lensa yang diinginkan berada pada posisi yang siap digunakan.
    • Makrometer berfungsi untuk menggeser lensa secara vertikal naik atau turun dengan cepat atau sebagai penggeser kasar.
    • Mikrometer berfungsi sebagai pengatur pembesaran dengan menggeser lensa secara vertikal naik atau turun dengan perlahan atau sebagai penggeser halus.
    • Meja preparat digunakan untuk meletakkan objek yang ingin diamati.
    • Penjepit preparat digunakan untuk menjepit preparat pada kedua sisi kiri dan kanan supaya tidak bergeser.
    • Pemutar berfungsi sebagai penggerak bagian optik.
    • Tabung merupakan bagian mikroskop berupa teropong yang lensa-lensanya terletak pada okuler dan revolver.
    • Kaki dan dasar digunakan untuk memperkokoh dan menopang kedudukan mikroskop.[15]










    Sumber:https://id.wikipedia.org/wiki/Mikroskop

    Leave a Reply

    Subscribe to Posts | Subscribe to Comments

  • - Copyright © Azka Ahmad Firoza - Powered by Blogger - Designed by Johanes Djogan -